by Wesley Gray, Alpha Architect
A lot of investors ask this question asĀ their wealth grows and the number of financial products grows exponentially. In order to generate a response, investors pay money to professional finance geeks who often presentĀ complex formulasĀ as a solution to the asset allocation problem. Last year, when I was asked to present a seminarĀ on the subjectĀ at the Morningstar ETF conference, I developed a tongue-in-cheek title for it: āBeware of Geeks Bearing Formulas.ā
In this short research piece we explore this seminar in detail. Our goal as evidence-based investors, and not story-based investors, is to set the record straight on the value of complexity in the context of asset allocation.
Bottom line: simple seems to be better.
Defining Tactical Asset Allocation (TAA)
What exactly is tactical asset allocation? I like to work backward to forward, since it helps to build theĀ concept.
- Allocation (A):Ā Our baseline, or static allocation to assets in our universe.
- E.g., 50% stocks, 50% bonds, rebalanced annually.
- Asset (A):Ā Financial assets that can be traded with reasonable liquidity. A key component of being ātacticalā is being liquid, which implies that hedge funds, private equity, and other asset classes with limited liquidity rights should be avoided in the context of ātacticalā asset allocation.
- E.g. Stocks, bonds, commodities, alternatives (if liquid).
- Tactical (T): Changing our baseline allocationĀ based on some tactical rules.
- E.g., 50% stocks, 50% bonds ā> 30% stocks, 70% bonds based on a market valuation signal.
So there you have it, tactical asset allocation is tactically investingĀ in liquid assets in order to beat a static benchmark allocation.
Basic Asset Classes:
There is an old investor adage that you shouldnātĀ put all of yourĀ eggs in one basket.Ā For my classes, IĀ dive into correlation mathematics to prove this point (see below), but the conceptual benefit of diversification is grounded inĀ common sense.
But how do we identify the eggs that go into our diversification basket?
Meb FaberĀ highlights in his Ivy Portfolio book, and reemphasizes in his new book Global Asset Allocation, that you donāt need to get fancy when it comes to asset class selection. One can capture the big muscle movements of the world by simply allocating across 5 asset classes:
- Domestic EquityĀ = SP500 Total Return Index
- International EquityĀ = MSCI EAFE Total Return Index
- Real EstateĀ = FTSE NAREIT All Equity REITS Total Return Index
- Commodities= GSCI Index
- Fixed IncomeĀ = Merrill Lynch 7-10 year Government Bond Index
We label the return series as follows throughout the analysis:
- SP500 = SP500 Total Return Index
- EAFE = MSCI EAFE Total Return Index
- REIT = FTSE NAREIT All Equity REITS Total Return Index
- GSCI = GSCI Index
- LTR = Merrill Lynch 7-10 year Government Bond Index
Common Asset Allocation Techniques
We discuss fiveĀ common asset allocation techniques that are commonly utilized in one form or the other by academics and/or practitioners.
1. Tangency Portfolio/ Max Sharpe Portfolio
Modern portfolio theory,Ā inspiredĀ by Markowitzās work on mean-variance-analysisĀ in the early 1950ās, identified the optimalĀ trade-off between risk and reward for a portfolio. Of course, the underlying assumptions serving as the foundation for this so-called āoptimalā algorithm stretch the imagination, but the intellectual construct and concepts are rock solid.
The punchline from modern portfolio theory is the so-called ātangency portfolio.āĀ This portfolio is identified by the āxā with a vertical line through it and sits on the CAL (capital allocation line).Ā For those of you who havenāt taken an investment management course in a while, the CAL represents all combinations of risk-free rate and the tangency portfolio. These are āoptimalā portfolios because there is no possible way to achieve a higher risk/reward. The optimal allocation weights for a 100% risk investor (i.e., no allocation to risk-free bonds) are the tangency portfolio weights.

2. Minimum Variance Portfolio
Many readers are probably familiar with minimum variance portfolios. As the name implies, minimum variance portfolio weights are identified such that the portfolioās expected variance is minimized. We canāt get tooĀ excited over the minimum variance portfolioābeing low variance doesnāt necessarily mean something is a good investment. We need to consider expected return.Ā In a modern portfolio theory context, the minimum variance portfolio (represented by the diamond below) is actually sub-optimal and should never be used. Instead, an investor can simply hold a small portion in risk-free bonds and the tangency portfolio to achieve a result with the same risk, but higher return.

Interestingly, even though there is no theoretical basis for its use, the minimum variance algorithm is often used in practiceā¦
3. Risk Parity Portfolio
Risk parity has beenĀ widely advocated recently, partly due to the success of the strategyās largest proponentāBridgewater Associates, LP.Ā The basic concept behind risk parity is to equalize risk allocations across asset classes. For example, consider a traditional 60/40 stock/bond portfolio allocation. The āproblemā with this allocation is that a large portion of the portfolioās risk is driven by the stock allocation. Letās say 90 percent of the risk is driven by the 60 percent allocation to stocks, and only 10 percent of portfolioās risk is driven by the 40 percent allocation to bonds. Risk parity argues that we should allocate to stocks and bonds such that 50 percent of the portfolioās risk is driven by the stock allocation and 50 percent is driven by the bond allocation. For example purposes, letās say that a 50/50 risk contribution implies a 80 percent allocation to bonds and a 20 percent allocation to stocks.
The figures below attempt to explain this via illustrations. Also, hereās a post that explains risk parity logistics.
4. Momentum Portfolio
Momentum strategies overweight assets that have relative strengthĀ over the mid-term (e.g., 1-year) and underweight assets that have performed relatively poorly over the mid-term. Ā This basic concept has been applied across asset classes, asset sectors, and Ā on individual securities. As an example, the chart below shows the invested growth of high momentum portfolios and low momentum portfolios back to 1927. The data is from theĀ French library. The historical performance of momentum strategies speaks for itself.Ā In an asset allocation context, a momentum strategy will allocate more to relatively strong performing assets and relatively less to poor performing assets.

5.Ā Simple Trend-Following Portfolios
Simple moving averages representĀ aĀ classic trend following strategy. The rule is simple:Ā If the market is above the 200-day moving average rule, hold, otherwise go to cash. Wharton Professor Jeremy Siegel found that this simple technical rule outperforms a buy-and-hold approach, both in absolute terms and on a risk-adjusted basis.Ā In general, while efforts to time the market should be viewed with skepticism, certain systematic timing strategies that have been explored in academia appear to reduce risk, without significantly impacting long-run returns. In particular, the application of simple moving average rules has been demonstrated to protect investors from large market drawdowns, which is defined as the peak-to-trough decline experienced by an investor. Siegel, in his book, āStocks for the Long Run,ā explores the effect on performance on the Dow Jones Industrial Average from 1886 to 2006, when applying a 200-day moving average rule.

Performance of Common Techniques
Letās runĀ a horse-race on theĀ various asset allocation strategies described above. The back test period is from 1/1979 to 12/2013.
Our core 5 assets are:
- SP500 = SP500 Total Return Index
- EAFE = MSCI EAFE Total Return Index
- REIT = FTSE NAREIT All Equity REITS Total Return Index
- GSCI = GSCI Index
- LTR = Merrill Lynch 7-10 year Government Bond Index (prior to 6/1982, Amit Goyal Data)
Our back test asset allocation strategies are:
- RISK_PARITY = Risk parity on core 5 asset classes, 3-yr rolling windows
- MOM_TAA = Relative momentum on core 5 asset classes, calculated using 12-month momentum
- MAX_SHARPEĀ = Tangency portfolio weights on core 5 asset classes, 3-yr rolling windows (weights constrained [-1,1])
- MIN_VAR = Minimum variance portfolio weights on core 5 asset classes, 3-yr rolling windows
- EW_INDEX = Equal-weight, monthly rebalanced across core 5 asset classes
- EW_INDEX_MA = Equal-weight, monthly rebalanced across core 5 asset classes, with 12-month moving average rule
- RANDOM = ¼ random chance of moving to risk-free rate, monthly rebalanced across core 5 asset classes
Results are gross of management fee and transaction costs and for illustrative purposes only. These are simulated performance results and do not reflect the returns an investor would actually achieve. All returns are total returns and include the reinvestment of distributions (e.g., dividends). Max Sharpe weights are constrained between -1 and 1. Data is from Bloomberg and publicly available sources.
Summary Statistics: Benchmarks

Over the time period, the S&P 500 and 10-Year bond exposures perform the best. It is no wonder that a 60/40 portfolio is so popular these daysāthe strategy cherry picks the best performing assets over the past 30+ years.
Summary Statistics: Asset Allocation with Core 5
The EW_INDEX strategy and the RANDOM strategies serve as benchmarks for the tactical asset allocation models (their construction is outlined above).
The results can be summarized as follows:
- The tangency portfolio, or āmax-sharpeā Ā methodĀ perform the worst and cannot even compete with the benchmarks.
- Minimum variance beats the tangency portfolio,Ā which is ironic, given the theoretical underpinnings for the tangency portfolio. Nonetheless, the strategy, while risk-managed, does poorly on upside returns, underperforming the simply 10-Year bond CAGR.
- The risk parity methodology performs admirably, with strong risk-adjusted statistics and strong drawdown containment.
- Momentum also performs admirably, with the highest CAGR, however, the strategy has to contend with large drawdowns.
- The EW index with trend-following performs the best, capturing much of the upside, but preventing large drawdowns.

Overall, risk parity, momentum and EW w/ MA look like the top performers.
Summary Statistics: Asset Allocation with CoreĀ 4
As a robustness test, we run all our tests for allĀ tactical asset allocation models with and without 10-Year Treasury Bond exposure. We do these tests because the 10-Year has been on an epic tear over the past 30 years, which makes it challenging to ascertain whether a tactical strategy is lucky or good when a system chooses a large position in Treasury Bonds. If a tactical system is robust it should work on 2 assets, 4 assets, 5 assets, or 50 assets.
Again, similar to the last table, we present the summary statistics for the EW_INDEX and RANDOM, which serve as benchmark performance guidelines when fixed-income is not included as an asset class.

The results can be summarized as follows:
- Risk parity completely blows up and no longer works. Clearly, the results associated with risk parity are dependent on 10-Year Treasury exposure.
- Minimum varianceĀ and tangency portfolios do not beat the benchmarks.
- MomentumĀ squeaks out a small gain on a risk-adjusted basis relative to the benchmarks, but the edge is much lower.
- The EW index with trend-following performs the best, capturing much of the upside, but preventing large drawdowns.
We highlight the drawdowns associated with the top-performing asset allocation systems, but exclude 10-years an an allocation choice. The only system that provides robust drawdown protection is the trend-following system.

So Trend-Following looks to be the winnerāTime To Go All-In?
Based on the results over the past 30+ years, trend-following looks to be the most effective and the most robust form of tactical asset allocationā¦
But how has the trend-following system performed since the 2008 financial crisis?Ā Well, in a word, terribly.
The chart below highlights the performance path of the EW buy & hold strategy versus the EW w/ trend-following index.

Conclusion
There is no panacea when it comes to tactical asset allocation. The evidence seems to suggest that trend-following rules are the most effective and the most robust, but as the recent 5 year run highlights, NOTHING WORKSĀ ALL THE TIME.
Copyright Ā© Alpha Architect